COVID-19 vaccine platforms, pharmaceutical and biopharmaceutical aspects

Danish Pharmaceutical Society

Camilla Foged, Professor, Department of Pharmacy, Faculty of Health and Medical Sciences

UNIVERSITY OF COPENHAGEN

Vaccine Design and Delivery

Vaccine platforms – COVID-19

https://mvec.mcri.edu.au/references/covid-19-vaccine-platforms/

COVID-19 vaccines conditionally authorised for use in EU

Vaccine	Producer	Technology	Status for EU approval
Comirnaty	BioNTech/Pfizer	mRNA	Authorised (21/12-2020)
COVID-19 Vaccine Moderna	Moderna	mRNA	Authorised (6/1-2021)
Vaxzevria	AstraZeneca/Oxford University	Adenovirus	Authorised (29/1-2021)
COVID-19 Vaccine Janssen	Johnson & Johnson	Adenovirus	Authorised (11/3-2021)
CVnCoV	CureVac AG	mRNA	Rolling review (start 12/02-2021)
NVX-CoV2373	Novavax CZ AS	Protein subunit	Rolling review (start 03/02-2021)
Sputnik V	Gamaleya National Centre of Epidemiology and Microbiology	Adenovirus	Rolling review (start 04/03-2021)
COVID-19 Vaccine (Vero Cell) Inactivated	Sinovac Life Sciences Co., Ltd	Inactivated	Rolling review (start 04/05-2021)

Danish Advance Purchase Agreements

Vaccine	Vaccine doses	Vaccinations
BioNTech/Pfizer	app. 9.2 mio.	app. 4.6 mio.
Moderna	app. 10.8 mio.	app. 5.4 mio.
AstraZeneca	app. 5.2 mio.	app. 2.6 mio.
Johnson & Johnson	app. 7.0 mio.	app. 7.0 mio.
CureVac	app. 9.1 mio.	app. 4.5 mio.
Sanofi-GSK	app. 3.9 mio.	app. 1.9 mio.
Total		app. 26 mio.

Source: Danish Medicines Agency

mRNA vaccines

mRNA vaccines

CBC News. https://www.cbc.ca/news/health/covid-vaccines-canada-profiles-1.5708240

Dammes and Peer (2020) Trends Pharmacol Sci

Delivery challenges

Steven F Dowdy (2017) Nature Biotechnology

mRNA vaccines - enabling technologies

- mRNA stabilisation
- Delivery system: Lipid nanoparticles (LNPs)
- Scalable LNP manufacturing: Microfluidics

Stabilisation of in vitro transcribed (IVT) mRNA

Ionizable cationic lipids

ALC-0315 (Acuitas Therapeutics; used by BioNTech)

n = 1 ; m = 2 : SM-102 (Moderna Lipid H)) n = 3 ; m = 1 : Moderna Lipid 5

Lipid nanoparticles (LNPs)

в

Kulkarni et al. 2018. Nucleic Acid Ther

mRNA vaccines – mechanism of action

Wadhwa et al., Pharmaceutics 2020

16/06/2021

16

SARS-CoV2 mRNA vaccine (mRNA-1273) - Moderna

Concept to Phase 1 in 42 days

PURIFICATION

Kilde: https://www.biopharma-reporter.com/Article/2021/02/10/BioNTech-starts-production-at-Marburg-COVID-19-vaccine-site

Manufacturing moonshot: How Pfizer makes its millions of Covid-19 vaccine doses

Kilde: https://edition.cnn.com/2021/03/31/health/pfizer-vaccinemanufacturing/index.html

Efficacy – phase III

May 14, 2021

Effectiveness - real life data

TABLE 2. COVID-19 vaccine effectiveness among health care personnel case-patients and controls, by number of COVID-19 vaccine doses received before SARS-CoV-2 test date — 33 U.S. sites, January–March 2021

	No. (%)		Vaccine effectiveness [†]	
Interval from	Case- patients*	Controls*	% (9:	5% CI)
dose to test date	(N = 623)	(N = 1,220)	Unadjusted	Adjusted [§]
Dose 1				
≥14 days	64 (10)	241 (20)		
Dose 2			82.2 (75.1-87.3)	81.7 (74.3-86.9)
≤2 days	5 (<1)	109 (9)		
3–6 days	16 (3)	85 (7)		
≥7 days	19 (3)	184 (15)	93.4 (86.4–96.8)	93.5 (86.5-96.9)

Centers for Disease Control and Prevention

Morbidity and Mortality Weekly Report

Early Release / Vol. 70

Interim Estimates of Vaccine Effectiveness of Pfizer-BioNTech and Moderna COVID-19 Vaccines Among Health Care Personnel — 33 U.S. Sites, January–March 2021

Tamara Pilishvili, PhD¹; Katherine E. Fleming-Dutra, MD¹; Jennifer L. Farrar, MPH¹; Ryan Gierke, MPH¹; Nicholas M. Mohr, MD²; David A. Talan, MD³; Anusha Krishnadasan, PhD³; Karisa K. Harland, PhD²; Howard A. Smithline, MD⁴; Peter C. Hou, MD⁵; Lilly C. Lee, MD⁶; Stephen C. Lim, MD⁷; Gregory J. Moran, MD³; Elizabeth Krebs, MD⁸; Mark Steele, MD⁹; David G. Beiser, MD¹⁰; Brett Faine, PharmD²; John P. Haran, MD, PhD¹¹; Utsav Nandi, MD¹²; Walter A. Schrading, MD¹³; Brian Chinnock, MD¹⁴; Daniel J. Henning, MD¹⁵; Frank LoVecchio, DO¹⁶; Joelle Nadle, MPH¹⁷; Devra Barter, MSc¹⁸; Monica Brackney, MS¹⁹; Amber Britton, MPH^{20,21}; Kaytlynn Marceaux-Galli, MPH²²; Sarah Lim, MBBCh²³; Erin C. Phipps, DVM^{24,25}; Ghinwa Dumyati, MD²⁶; Rebecca Pierce, PhD²⁷; Tiffanie M. Markus, PhD²⁸; Deverick J. Anderson, MD²⁹; Amanda K. Debes, PhD³⁰; Michael Lin, MD³¹; Jeanmarie Mayer, MD³²; Hilary M. Babcock, MD³³; Nasia Safdar, MD, PhD^{34,35}; Marc Fischer, MD¹; Rosalyn Singleton, MD³⁶; Nora Chea, MD¹; Shelley S. Magill, MD, PhD¹; Jennifer Verani, MD¹; Stephanie Schrag, DPhil¹; Vaccine Effectiveness Among Healthcare Personnel Study Team

16/06/2021 21

mRNA vaccines - pros and cons

Pros:

- Fast design
- Efficacy approximately 95%
- Safe
- Flexible: mRNA can readily be exchanged (new virus variants)

Cons:

- Relatively expensive
- Many raw materials needed for production
- Complex manufacturing process
- Duration of immunity revaccination will probably be required after 9 months

Adenovirus vaccines

16-06-2021 23

Adenovirus vaccines

Kilde: CBC News. https://www.cbc.ca/news/health/covid-vaccines-canada-profiles-1.5708240

Adenovirus vaccines - production

Vemula and Mittal (2010) Production of adenovirus vectors and their use as a delivery system for influenza vaccines. Expert Opinion on Biological Therapy **10**, 1469-1487

Adenovirus vaccines – pros and cons

Pros:

- Rapid design
- Cheap
- Stability
- Easy distribution and storage
- Single dose vaccines

Cons:

- Efficacy approximately 60%
- Revaccination: Decreased efficacy is expected (emergency vaccine)
- Safety (VITT)

Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT)

DNA vaccines - CoVaXIX - SSI

Kilde: Silveira *et al.* DNA vaccines against COVID-19: Perspectives and challenges, Life Sciences, Volume 267, 2021, 118919

- Stable and can be stored at 4°C. Efficacy?
- Clinical testing not initiated, but is expected to be ready in 2023

Vaccine platforms – COVID-19

https://mvec.mcri.edu.au/references/covid-19-vaccine-platforms/

Protein subunit vaccines - Novavax

Danish vaccine – ABNCoV2 – Adaptvac/Bavarian Nordic/UCPH

Fougeroux *et al.* Capsid-like particles decorated with the SARS-CoV-2 receptor-binding domain elicit strong virus neutralization activity. Nat Commun. 2021 Jan 12;12(1):324.

- Phase I studies initiated, ready ultimo 2021 or primo 2022
- Safe, efficacious and stable (storage at room temperature)
- Can be produced anywhere

 $\mathcal{W} \in \mathbb{R}$

Protein subunit vaccine – Sanofi/GSK

Safety and immunogenicity of SARS-CoV-2 recombinant protein vaccine formulations in healthy adults: interim results of a randomised, placebo-controlled, phase 1–2, dose-ranging study

Paul A Goepfert, Bo Fu, Anne-Laure Chabanon, Matthew I Bonaparte, Matthew G Davis, Brandon J Essink, Ian Frank, Owen Haney, Helene Janosczyk, Michael C Keefer, Marguerite Koutsoukos, Murray A Kimmel, Roger Masotti, Stephen J Savarino, Lode Schuerman, Howard Schwartz, Lawrence D Sher, Jon Smith, Fernanda Tavares-Da-Silva, Sanjay Gurunathan, Carlos A DiazGranados, Guy de Bruyn

 Background CoV2 preS dTM is a stabilised pre-fusion spike protein vaccine produced in a baculovirus expression
 Lancet Infect Dis 2021

 system being developed against SARS-CoV-2. We present interim safety and immunogenicity results of the first-in
 Published Online

 human study of the CoV2 preS dTM vaccine with two different adjuvant formulations.
 April 19, 2021

AS03 mechanism of action

Killed/inactivated virus vaccines

Conclusions

- The corona crisis is the **moon landing of vaccine research**
- COVID-19 vaccines were developed in **record time**!
- Entirely new vaccine platforms (mRNA + adenovirus) have been the fastest to develop
- mRNA vaccines are **safe**, **very efficacious**, and **flexibe**
- Adenovirus vaccines are relatively efficacious, but cause rare, serious side effects (VITT)
- Other types of vaccines are reviewed/in phase III (subunit and inactivated vaccines)
- **Revaccination** will likely be needed in the future (immunity decreases after 9 months)

NanoAssemblr®Ignite – Precision Nanosystems

Physicochemical characterization of mRNA nanomedicine – an analytical challenge

Nanomaterial Quality Attributes:

- Chemical composition
- Average particle size
- Particle size distribution
- General shape and morphology
- Stability, both physical and chemical

Physicochemical characterization boils down to analytical instrumentation and development of new methods

Additional Quality Attributes:

- Assay and distribution of API
- Structural attributes
- Surface properties
- Coating properties
- Porosity
- In vitro release
- Crystal form
- Impurities
- Sterility and endotoxin levels

16/06/2021 38

Conclusions

- RNA therapeutics represent highly complex products, and their development should be based on solid science
- Understanding formulations based on nanoparticles represents an analytical challenge
- Our focus is to **generate fundamental knowledge** to facilitate the design, development and manufacture of safe and efficacious nanomedicines
- Scalability is key